W5

Physikalisches Grundpraktikum Abteilung Wärmelehre

Thermoelektrizität

1 Vorausgesetzte Kenntnisse

- 1. Ströme (elektrisch, Wärme), Ohm'sches bzw. Fourier'sches Gesetz
- 2. Parallelen in Beschreibungen für elektrische und Wärme-Größen
- 3. Peltier- und Seebeck-Effekt; Peltier- und Thermoelement
- 4. Drude-Modell (Annahmen)
- 5. Wärmekraftmaschine und Wärmepumpe; Effizienzen und Leistungszahlen
- 6. Elektronen- und Löcher-Leitung in Halbleitern

zusätzlich für Teilnehmer am Praktikum Physik III:

7. Erster und Zweiter Hauptsatz, Carnot-Wirkungsgrad, (ir)reversible Vorgänge

2 Mitzubringende Hilfsmittel

Bringen Sie folgende Materialien mit:

• 1 Blatt Millimeterpapier

3 Literatur

- Hintergrundinfos W+
- Literaturmappe W5

4 Situation (abstrakt) und Definitionen

Elektrische Leiter besitzen "verschiebbare" Ladungsträger. In elektrisch leitenden Festkörpern sind das frei bewegliche Elektronen – man spricht von Elektronenleitung – sie transportieren nicht nur ihre Ladung, sondern auch Wärme, d. h. die kinetische Energie ihrer thermischen Bewegung, die von der Temperatur ihrer Umgebung (Atomrümpfe) bestimmt wird. Diese Kopplung von Ladungs- und Wärmetransport führt zu thermoelektrischen Erscheinungen. Die praktisch bedeutsamsten und zueinander komplementären "Effekte" sind:

• Peltier-Effekt: Gemeinsam mit elektrischem Strom ^eI fließt ein Wärmestrom (Stromdichten analog)

$${}^{\mathrm{w}}I = \dot{Q}_{\mathrm{Peltier}} = \Pi \cdot {}^{\mathrm{e}}I$$
 ${}^{\mathrm{w}}\vec{\jmath}_{\mathrm{P}} = \Pi \cdot {}^{\mathrm{e}}\vec{\jmath}$ (1)

Man nennt \dot{Q}_{Peltier} Peltier-Wärmestrom. Die Proportionalitätskonstante Π heißt Peltier-Koeffizient und ist material- und temperaturabhängig. Sie hat die Maßeinheit $[\Pi] = \operatorname{J} \operatorname{s}^{-1} \operatorname{A}^{-1} = \operatorname{V}$.

Der Peltier-Effekt erfordert zwingend elektrischen Stromfluss; das betrachtete Leiterstück ist also grundsätzlich Teil eines Stromkreises. Bei einheitlicher Temperatur ist der Peltier-Effekt besonders einfach zu verstehen, weil ohne Temperaturgefälle die gewöhnliche Wärmeleitung nicht zur Wirkung kommt.

• Seebeck-Effekt: Hält man ein Temperaturgefälle $(-\operatorname{grad} T)$ aufrecht, so entsteht das sogenannte thermoelektrische Feld $\vec{E}_{\operatorname{thermo}}$. Wie in der E-Lehre üblich, erhält man die Thermospannung als Wegintegral über den Feldvektor – siehe Abschnitt 6.4.

$$\vec{E}_{\mathrm{thermo}} = \alpha \cdot \operatorname{grad} T$$

$$U_{\mathrm{th}} = \int_{\mathrm{Ort} \, 1}^{\mathrm{Ort} \, 2} \vec{E}_{\mathrm{thermo}} \cdot \vec{\mathrm{d}s} = \int_{T_1}^{T_2} \alpha(T) \cdot \mathrm{d}T \tag{2}$$

Die Proportionalitätskonstante α heißt Seebeck-Koeffizient; sie wird auch (absolute) Thermokraft genannt und ist material- und temperaturabhängig. Sie hat die Maßeinheit $[\alpha] = V/K$.

Der Seebeck-Effekt erfordert zwingend ein Temperaturgefälle. Am elektrisch isolierten Leiterstück ist er am einfachsten zu verstehen, weil dann keine elektrischen Dauerströme fließen und keine zusätzlichen Felder (infolge ohmscher Spannungsabfälle) auftreten.

Peltier- und Seebeck-Koeffizient sind über die Kelvin-Relation miteinander verbunden²:

$$\Pi = \alpha \cdot T \tag{3}$$

Weder Peltierwärme noch thermoelektrisches Feld sind im Alltag wahrnehmbar, weil sie im Inneren des Leiters stattfinden bzw. sehr klein sind. Elektrische "Stromkreise" sind geschlossene *Maschen* im Sinne der Kirchhoff'schen Regeln, das Innere der Leiter ist unzugänglich. Man muss³ (mindestens) zwei verschiedene Leiter-Materialien in einer Masche als Reihenschaltung kombinieren, damit die *Differenzen* ihrer Peltierwärmen bzw. Thermokräfte zu Tage treten.

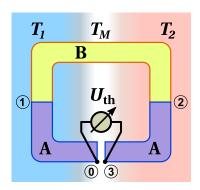


Abbildung 1: Thermoelement

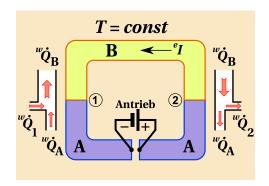


Abbildung 2: Peltier-Effekt (Ladungsträger negativ)

¹Primär gibt es einen "mechanischen Antreiber", der (je nach äußerer Beschaltung) Ladungsträger in eine Vorzugsrichtung treibt oder treiben könnte – in der E-Lehre spricht man von »Elektromotorischer Kraft« (EMK). Das thermoelektrische Feld entsteht bei unterbrochenem Stromkreis, es wirkt der EMK gerade so stark entgegen, dass der Stromfluß zum Stillstand kommt. Man "zählt" die EMK in Richtung des Gefälles (–grad T) positiv, das thermoelektrische Feld deshalb in Richtung des Anstieges.

²synonym zu *Thomson-Relation* (Lord Kelvin und William Thomson ist dieselbe Person). Aus einer Beispielrechnung in W+ wird ein enger Zusammenhang zum Zweiten Hauptsatz bzw. Carnot-Wirkungsgrad ersichtlich.

³Ausnahme von dieser Regel ist der Thomson-Effekt – aber auch dieser ist sehr klein.

5 Ziel des Versuches

Das handelsübliche Bauteil "Halbleiter-Peltierblock", "Peltierelement-Modul" oder kurz "Peltier-Modul" dient primär zum aktiven Wärmetransport (Wärmepumpe aufgrund des Peltier-Effektes), kann aber auch invers betrieben werden als "Thermogenerator" zur Gewinnung elektrischer Energie (Wärmekraftmaschine aufgrund des Seebeck-Effektes). Es ist also eine thermodynamische Maschine, welche Wärme und elektrische Energie ineinander umzuwandeln vermag.

Teilnehmer am einsemestrigen Praktikum und ggf. Physik LaG sollen die Versuchsanordnung als Wärmepumpe betreiben. Aus der zeitlichen Änderung von Wasserbad-Temperaturen sind zugeführte bzw. entzogene Wärmeleistungen zu bestimmen (Kalorimetrie) und mit der eingesetzten elektrischen Leistung in Beziehung zu setzen (Leistungszahlen). Auch der in W0 thematisierte Wärmeaustausch mit der Umgebung erfordert Aufmerksamkeit.

Bei Interesse können Innenwiderstand und Thermokraft des Peltier-Moduls bestimmt werden, letztere lässt sich mit der Vorhersage einer simplen Modell-Annahme vergleichen.

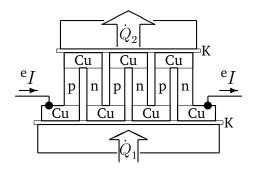
Teilnehmer am dreisemestrigen Praktikum bringen Vorkenntnisse von Versuchen W8 und W10 mit – Erfahrung mit Kalorimetrie und Leistungszahlen wird vorausgesetzt, auch erwünscht sind Grundkenntnisse zu W9 (fand/findet zeitnah statt) und E13 (im selben Semester).

Sie sollen diese "Maschine" als Thermogenerator betreiben, die in der Apparatur fließenden Ströme quantitativ identifizieren und Kenngrößen wie Effizienz(en), Thermokraft und Widerstände berechnen. Auch die *innerhalb des Peltier-Moduls* herrschende Szene wird quantitativ analysiert, die eigentlichen thermoelektrischen Effekte von "Konkurrenten und Begleitern" unterschieden.

Die Kenntnisse und Fähigkeiten zur Auswertung müssen Sie sich in der Vorbereitung anhand der folgenden »Grundlagen« aneignen. Weiterhin sollten Sie sich mit thermoelektrischen Anwendungen "im Allgemeinen" vertraut machen.

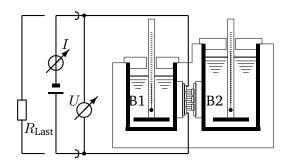
6 Grundlagen

6.1 Peltier- und Seebeck-Koeffizient eines "Gases" berechnen (klassisch)


Ein Ensemble aus N Massepunkten eines idealen Gases in einer Region mit Temperatur T besitzt im Mittel ${}^{\mathrm{w}}Q_{\mathrm{kin}}=\frac{3}{2}NkT$ als Summe der kinetischen Energien. Trägt jedes Teilchen außerdem die Ladung $q={}^{\mathrm{e}}Q/N$, so folgt für die gekoppelten Ströme:

$$\frac{\text{Wärmestrom}}{\text{elektr. Strom}} = \frac{{}^{\text{W}}I}{{}^{\text{e}}I} = \frac{{}^{\text{W}}I \cdot \Delta t}{{}^{\text{e}}I \cdot \Delta t} = \frac{{}^{\text{W}}Q_{\text{kin}}}{{}^{\text{e}}Q} = \frac{N \cdot \frac{3kT}{2}}{N \cdot q}$$
(4)

$$\dot{Q}_{\text{Peltier}} = {}^{\text{w}}I = \frac{3kT}{2q} \cdot {}^{\text{e}}I = \Pi \cdot {}^{\text{e}}I \tag{5}$$


$$\Pi = \frac{3kT}{2a} = \alpha \cdot T \tag{6}$$

$$\alpha = \frac{3k}{2q}$$
 ; $\frac{3}{2} \cdot \frac{1.381 \times 10^{-23} \text{ J/K}}{1.602 \times 10^{-19} \text{ As}} = 129.3 \,\mu\text{V/K}$ (7)

Abbildung 3:

Aufbau eines Peltier-Moduls (drei Thermopaare)

Abbildung 4:

Die Apparatur; die Beschaltung links vom Klemmenpaar ist abhängig vom Experiment (Thermogenerator / Wärmepumpe).

Bemerkenswert an diesem Ergebnis ist, dass die Thermokraft α hier nicht von der Temperatur abhängt; mangels individueller Parameter ist Gleichung (7) außerdem unabhängig vom Material. Dieses extrem simple Modell kann *nicht* die *Unterschiede* zwischen verschiedenen Metallen beschreiben; für die in der Praxis üblichen Kombinationen *metallischer* Leiter versagt es – kein Erkenntnisgewinn hier.

Wenn aber das Vorzeichen der Ladung als Unterschied ausgenutzt wird – für Elektronen sind α und Π negativ, bei Löcherleitung positiv – ergibt sich die Thermokraft einer Kombination aus p- und n- dotierten Halbleitern als Differenz der Einzelbeiträge zu

$$\alpha_{\text{HL-Thermopaar}} = \alpha_{\text{p-HL}} - \alpha_{\text{n-HL}} = \frac{3k}{e} = 0.26 \,\text{mV/K} \tag{8}$$

Im Praktikumsversuch können Sie **überprüfen**, ob dieser Modellwert "grob daneben" liegt, oder ob er bei Halbleitern zur "ungefähren" Orientierung taugt – beispielsweise wird die *Wiedemann-Franz-Beziehung* (s.a. W+)siehe gleichnamigen Abschnitt in W+ zum Versuch W11 vom Drude-Modell "halbwegs" erfüllt, d. h. das Modell liegt dort "nur um einen Faktor zwei daneben".

6.2 Halbleiter-Peltier-Modul

Technische Anwendung findet der Peltier-Effekt in der Wärmeabfuhr (Kühlung) mit Hilfe von Halbleiter-Peltier-Kühlmodulen (Abb. 3). Der Kontakt zwischen den Halbleitern (p-Dotierung) und (n-Dotierung) wird durch Kupferbrücken hergestellt. Auf Ober- und Unterseite ist das Modul mit dünnen Keramikplatten K abgedeckt; sie sind elektrisch isolierend, lassen Wärme aber gut passieren. Je ein Halbleiter-Paar bildet ein Peltierelement. Bezüglich der Geometrie (oben/unten) ergeben die abwechselnden Richtungen des elektrischen Stromes in Kombination mit den wechselnden Vorzeichen von α bzw. Π eine einheitliche Transportrichtung für die Peltierwärme. Die Peltierelemente sind elektrisch in Reihe, thermisch dagegen parallel geschaltet.

Zum Abschluss der Hausaufgabe (ab Seite 6) vergewissern Sie sich selbst – anhand der Bewegungsrichtung der maßgebenden Ladungsträger – dass für die in Abb. 3 eingezeichnete (technische) Richtung des Gleichstroms ^e*I* die unteren Kontaktbrücken gekühlt und die oberen Brücken erwärmt werden.

⁴Stören würden pn-Übergänge wegen ihrer Diodenwirkung – ein Thema des Wahlversuches E10

6.3 Qualitative Betrachtung des Seebeck-Effektes (beliebige Leiter)

In einem elektrischen Leiter, in dem ein Temperaturgefälle aufrecht erhalten wird (also ein Zustand im thermischen Nicht-Gleichgewicht), entsteht ein elektrisches Feld (Potenzialgefälle). Das geschieht bereits in einem einzelnen, elektrisch isoliert aufgehängten homogenen Leiterstück: Stimmen die Teilchendichten der beweglichen Ladungsträger in benachbarten Regionen (kühl/warm) überein, so werden pro Zeiteinheit, wegen der unterschiedlichen Geschwindigkeitsverteilungen, mehr "warme" Teilchen in die kühle Region auswandern, als "kühle" Teilchen in die warme Region eindringen. Netto bedeutet diese sogenannte *Thermodiffusion* einen Teilchenfluss "in Richtung kühlerer Regionen", der zu einer Anhäufung entgegengesetzer Ladungen an den Leiterenden führt (Ladungsüberschuss von Atomrümpfen am warmen, von beweglichen Ladungsträgern am kalten) und dazwischen ein (*thermo*-)elektrisches Feld erzeugt, welches einer weiteren Anhäufung entgegenwirkt.⁵

Zwar wird das Ungleichgewicht der Anzahl-Dichte wegen der Coulomb-Kräfte viel geringer sein – weitgehend inkompressibles Ladungsträger-Gas – als bei ungeladenen Teilchen, es bleibt aber immer die

Tendenz zur "Anhäufung am kälteren Ende"!

6.4 Drude-Modell

Um den Ladungstransport in einem Metall verstehen zu können, entwickelte Paul Drude um 1900 ein einfaches Modell der elektrischen Leitfähigkeit. Es beruht auf der Annahme, dass sich Elektronen im Fest-körper frei bewegen können und ein endlicher elektrischer Widerstand durch Stöße der Elektronen mit den Atomrümpfen hervorgerufen wird. Aufgrund der Ähnlichkeit zur Gastheorie wird auch von "Elektronengas" gesprochen. Die Elektronen besitzen dabei eine Geschwindigkeit v und stoßen nach der mittleren Stoß- oder Relaxationszeit τ mit den Atomrümpfen zusammen und werden im Mittel gebremst. In der klassischen Bewegungsgleichung ($F=m\cdot a$) fließt dies als Reibungsterm $\frac{m}{\tau}v$ ein. Die Bewegungsgleichung ergibt sich somit zu:

$$m\frac{dv}{dt} + \frac{m}{\tau}v = -eE\tag{9}$$

Im stationären Fall mit $\frac{dv}{dt} = 0$ ergibt sich so eine *Driftgeschwindigkeit* v_d :

$$v_d = -\frac{e\tau}{m}E \equiv -\mu E \tag{10}$$

Darin ist μ per Definition die Beweglichkeit der Ladungsträger. Mit der Ladungsträgerdichte n der Elektronen folgt für die Stromdichte:

$$j = -en v_d = en \mu E = \sigma E \tag{11}$$

mit der elektrischen Leitfähigkeit $\sigma = en\mu$. Dies ist das Ohmsche Gesetz!

Quantitativ schlägt das Drude-Modell jedoch fehl. Grund dafür ist u. a. die Annahme des Modells, dass alle Leitungselektronen zum Ladungstransport beitragen. Die quantenmechanische Betrachtung von Elektronen im periodischen Potenzial eines Kristallgitters ergibt hingegen, dass nur Elektronen im Bereich der sog. *Fermikante* zum Ladungstransport beitragen. Die Ursache liegt letztlich darin, dass Elektronen Fermionen sind und der *Fermi-Dirac-Statistik* und damit dem *Pauli-Prinzip* gehorchen.

⁵Im Anhang von W+ gibt es dazu ausführliche anschauliche Modellrechnungen.

Hausaufgabe, zur Vorbereitung wesentlich

Vor dem Praktikumstermin zu Hause zu erledigen:

Zeichnen Sie Vektoren (Richtungspfeile, es geht um das qualitative Verständnis) in das Bild 7 auf Seite 15 ein. (Diese letzte Seite ist zum Abtrennen und Zerschneiden vorgesehen. Sie enthält ausschließlich Bilder, die an geeigneter Stelle im Versuchsprotokoll anzubringen sind.) Verwenden Sie dazu Bleistift und Buntstifte – rot: "plus" oder "von Löchern getragen", blau: "minus" oder "von Elektronen getragen".

- 1. Der Temperaturunterschied sorgt schon ohne elektrischen Stromfluss für Wärmeflüsse: "gewöhnliche" Wärmeleitung. In jedem Thermopaar-Schenkel zeichnen Sie (schwarze) Richtungspfeile für die Wärmestromdichte ${}^{\rm w}\vec{\jmath}_{\rm WL}$ ein.
- 2. Die Richtungspfeile für die Driftgeschwindigkeiten $\vec{v}_{\rm D}$ der Ladungsträger. Machen Sie die Regionen kenntlich, wo ein Überschuss der beweglichen Ladungsträger⁶ entstanden ist.
- 3. Die Richtungspfeile für das thermoelektrische Feld im Material angeben. Warum entstand es, welche Wirkung hat \vec{E}_{th} auf die Ladungsträger?
- 4. Ergänzen Sie die Anordnung zu einem Stromkreis, der einen externen Lastwiderstand ${}^{e}R_{Last}$ enthalten soll Betrieb als Thermogenerator. Zeichnen Sie die "technische" Stromrichtung durch den Widerstand ein, außerdem Richtungspfeile der Stromdichte ${}^{e}\vec{\jmath}$ in den Schenkeln. Kennzeichnen Sie die "Polarität" der Stellen des Thermopaares, an die der Lastwiderstand angeschlossen wurde.
- 5. Die Peltier-Wärme-Stromdichten $\vec{v}_{\vec{j}_P}$.

Es besteht eine gewisse Ähnlichkeit zu einem alpinen Wintersportgebiet mit Abfahrtstrecke und Skilift – in einer Region folgt die Fortbewegung dem Potenzial-Gefälle, anderswo hingegen braucht es Zusatz-Kräfte, welche entgegen der natürlichen Fahrtrichtung wirken.⁸

Welche Änderungen sind vorzunehmen (bzw. ergeben sich daraus), damit die Peltier-Wärme von kalt nach warm transportiert wird?

6.4 Thermospannung als Wegintegral bzw. als Potenzialdifferenz

Definition: Als absolute Thermokraft oder Seebeck-Koeffizient α bezeichnet man die auf eine kleine Temperaturdifferenz dT bezogene (und durch sie hervorgerufene) Thermospannung d U_{th} :

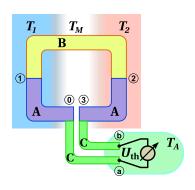
$$\alpha(T) = \left. \frac{\mathrm{d}U_{\mathrm{th}}}{\mathrm{d}T} \right|_{T} \tag{12}$$

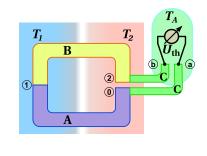
Das ist eine Umformulierung der Glchg. (2) von Seite 2, die ohne Vektoren und Gradienten auskommt.

Für beliebige Temperaturunterschiede wird Glchg. (12) entlang eines (beliebigen) Verbindungswegesintegriert:

$$U_{\text{th}}(\text{Ort}\, \textcircled{1}, \text{Ort}\, \textcircled{2}) = U_{\text{th}}(T_1, T_2) = \int_{T_1}^{T_2} \alpha_{\text{Material}}(T') \cdot dT'$$
(13)

Technisch gilt $U_{\rm th}$ als positiv, wenn für positives α der Pluspol am kälteren Ende erscheint.


 $^{^6}$ in Form symbolischer Ladungen einzeichnen. Die Region mit Ladungsträger-Mangel soll ohne Kennzeichnung bleiben 7 Zur Erinnerung: In der E-Lehre wird mit *positiven Probeladungen* argumentiert.


⁸Die Beförderung dürfte nicht kontinuierlich mit einem zwischen Tal- und Bergstation umlaufenden Seil erfolgen, sondern durch viele ortsfeste "Stoß-Stationen", die im Tal besonders heftige Stöße austeilen; Stationen in größerer Höhe stoßen sanfter…

(Einschub)_____(Einschub)

Praktisch bedeutsam ist der Einsatz eines dritten Materials C für "Verbindungsleitungen" zwischen *Messfühler* und *Anzeige*. Im Versuchsaufbau wird Kupfer als drittes Material verwendet – sowohl innerhalb des Peltier-Moduls als auch in den sonstigen elektrischen Verbindungsleitungen.

Erweitern Sie Glchg. (14) auf den Integrationsweg von ⓐ nach ⓑ der nebenstehenden Anordnungen. Beide Orte ⓐ und ⓑ liegen auf Temperatur T_A , hier wird die Thermospannung $U_{\rm th}$ detektiert und zur Anzeige gebracht. An den Verbindungsstellen ① und ③ herrscht $T_{\rm M}$ wie bisher. Im rechten Bild ist $T_{\rm M}$ mit $T_{\rm 2}$ identisch. Dass sich am Resultat (15) nichts ändert, können Sie leicht (als Verständnisübung) nachweisen...

Abbildung 5: Fernablesung eines Thermoelements. Die Anordnung rechts zeigt das Prinzip einer Sonde für T_1 , wobei eine apparativ fixierte Referenz für T_2 sorgt.

Praktischen Nutzen hat solch ein Wegintegral erst, wenn es sich über eine Masche erstreckt. Natürlich wird der Integrationsweg dabei eine Strecke weit mit, eine andere Strecke weit entgegen dem Temperaturgefälle durchlaufen. Im (rechnerisch) geschlossenen Integrationsweg verbleibt die "Thermospannung der Materialkombination A,B" als Differenz der Einzelspannungen in der Schaltung nach Abb. 1 (*Thermoelement*): An den Stellen ①, ② sind die beiden Leiter aus Materialien A, B miteinander verbunden. Leiter A ist an einer auf $T_{\rm M}$ befindlichen Stelle aufgetrennt, um die Spannung $U_{\rm th}$ zwischen den zwei Enden ③ und ⑥ nachweisen zu können. Die gesamte Spannungs-Messeinrichtung soll sich auf dieser (unabhängig von $T_{\rm 1}$ und $T_{\rm 2}$ wählbaren) "Messwerk-Temperatur" $T_{\rm M}$ befinden, damit dort keine weiteren thermoelektrischen Felder entstehen.

Man startet bei ① mit Material A und durchläuft ① vor ② wie für Glchg. (13). Dann gilt:

$$U_{\text{th}} = \int_{0}^{3} \alpha(T') \, dT' = \int_{T_{\text{M}}}^{T_{1}} \alpha_{\text{A}}(T') \, dT' + \int_{T_{1}}^{T_{2}} \alpha_{\text{B}}(T') \, dT' + \int_{T_{2}}^{T_{\text{M}}} \alpha_{\text{A}}(T') \, dT'$$
 (14)

$$= \int_{T_1}^{T_2} \left(\alpha_{\mathbf{B}}(T') - \alpha_{\mathbf{A}}(T') \right) dT' = \int_{T_1}^{T_2} \alpha_{\mathbf{A},\mathbf{B}}(T') dT' = U_{\mathbf{A},\mathbf{B}}(T_1, T_2)$$
(15)

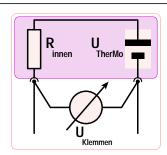
Man nennt $\alpha_{A,B} = \alpha_B - \alpha_A$ die "Thermokraft der Materialkombination A,B".

Liegen T_1 und T_2 nahe beieinander, so werden α_A , α_B , $\alpha_{A,B}$ näherungsweise konstant sein, und Glchg. (15) vereinfacht sich zu:

$$U_{A,B}(T_1, T_2) = \alpha_{A,B} \cdot (T_2 - T_1) \quad . \tag{16}$$

6.5 Halbleiter-Peltier-Modul im Temperaturgefälle

Im Temperaturgefälle fließt infolge der stets vorhandenen Wärmeleitfähigkeit ein Wärmestrom von warm nach kalt (zweiter Hauptsatz).


Das Peltier-Modul kann nun entweder den Temperaturunterschied als *Thermogenerator* mit Hilfe des Seebeck-Effektes ausnutzen, oder aber mit Hilfe des Peltier-Effektes als *Wärmepumpe* betrieben werden, um dem Wärmeleitungs-Strom entgegen zu wirken und der kälteren Region Wärme zu entziehen.

Wegen dieser Wahlfreiheit bezeichnet man die Kombination zweier "Schenkel" eines Thermo- oder Peltier-Elementes allgemein als *Thermoelektrisches Paar* oder kurz *Thermo-Paar* (englisch: *thermocouple*). Das Peltier-Modul ist eine Ansammlung vieler elektrisch in Reihe geschalteter Halbleiter-Thermopaare.

Betreibt man das Peltier-Modul als Thermogenerator, so lässt sich *elektrische Energie* aus einem Wärmefluss von der warmen zur kalten Oberfläche *gewinnen*. Eine Wärmepumpe transportiert Wärme in Gegenrichtung, d.h. von der kalten zur warmen Oberfläche, wozu *elektrische Energie aufzuwenden* ist.

6.6 Elektrisches Ersatzschaltbild des Peltier-Moduls, z. B. von Abb. 3

- (a) Alle elektrisch leitenden Bestandteile sind mit Widerstand behaftet, und sie sind in Reihe geschaltet. Zwischen den Außenkontakten (den *Klemmen*) ist nur die *Summe* wahrnehmbar, im Bild 6 ist das der sogenannte Innenwiderstand ${}^{\rm e}R_{\rm innen}$, der in diesem Versuch (auch) zu ermitteln ist.
- (b) Jedes Thermopaar produziert Thermospannung. Die Reihenschaltung liefert die Summe; nur diese kann zwischen den Außenkontakten wahrgenommen werden. Wir nennen diese Summe einfach $Thermospannung \ des \ Moduls$ und bezeichen sie kurzerhand mit U_{TherMo}

Abbildung 6:Elektr. Ersatzschaltbild

(c) Die zwischen den Außenkontakten herrschende Klemmenspannung U_{Klemmen} setzt sich additiv aus U_{TherMo} und der vom Strom $^{\text{e}}I$ verursachten Spannung $^{\text{e}}R_{\text{innen}} \cdot ^{\text{e}}I$ zusammen. Je nach Richtung von $^{\text{e}}I$ kann U_{Klemmen} größer oder kleiner als U_{TherMo} werden. Die Klemmenspannung werden Sie unmittelbar messen (Digitalmultimeter).

6.7 Thermisches Ersatzschaltbild des Peltier-Moduls, z. B. von Abb. 3 auf Seite 4

Abbildung 8 auf Seite 15 zeigt das Ersatzschaltbild. Helfen kann auch Abb. 3 in W+ (Version H).

Alle Thermopaare des Moduls sind thermisch parallel geschaltet.

- (a) Die Parallelschaltung der für die "gewöhnliche" Wärmeleitung verantwortlichen Wärmewiderstände ergibt ${}^{\rm w}R_{\rm par}$. Es gilt $(T_{\rm PM\,2}-T_{\rm PM\,1})={}^{\rm w}I_{\rm par}\cdot{}^{\rm w}R_{\rm par}$. Dieser "gewöhnliche" Wärmestrom ${}^{\rm w}I_{\rm par}$ wird *nicht* vom elektrischen Strom ${}^{\rm e}I$ beeinflusst.
- (b) Die Peltier-Wärmeströme fließen durch eine reversible thermodynamische Maschine TDM (wird in Abb. 8 als WKM bezeichnet, weil dort die Laufrichtung als Wärmekraftmaschine festgelegt ist). Nur hier sind thermoelektrische Effekte wirksam, d. h. \dot{Q}_{Peltier} (= $^{\text{w}}\dot{Q}_{\text{2->WKM}}$) und $^{\text{e}}U_{\text{TherMo}}$ kommen zur Geltung.
- (c) Die in ${}^{e}R_{\text{innen}}$ (siehe Abschnitt 6.6) produzierte Joule'sche Wärme wird aufgeteilt und den zwei Seiten von ${}^{w}R_{\text{par}}$ zugeführt als ${}^{w}\dot{Q}'$ und ${}^{w}\dot{Q}''$.
- (d) Es gibt zwei weitere Wärmewiderstände ${}^{\mathrm{w}}R_1$ und ${}^{\mathrm{w}}R_2$; jeder davon beschreibt Durchgangs- und Übergangswiderstände auf dem Weg zwischen der Wasserfüllung eines angrenzenden Behälters und den Kupferbahnen der entsprechenden Modul-Seite.

6.8 Effizienz; Wirkungsgrad; Leistungszahlen

Allgemeine Definition:

Effizienz
$$\stackrel{\text{def}}{=}$$
 $\frac{\text{Nutzen}}{\text{Aufwand}}$

Bei Wärmekraftmaschinen

trägt sie die spezialisierte Bezeichnung Wirkungsgrad η . Als Nutzen gilt die abgegebene mechanische (bzw. elektrische) Leistung ${}^e\dot{W}_{\rm nutz}$, als Aufwand die Zufuhr des Wärmestroms ${}^w\dot{Q}_{\rm warm}$ auf der warmen Seite – das sind im Alltag also die Brennstoffkosten...

$$\eta(t) = \frac{{}^{\mathrm{e}}\dot{W}_{\mathrm{nutz}}(t)}{{}^{\mathrm{w}}\dot{Q}_{\mathrm{warm}}(t)}$$
(17)

Neben dem vorgenannten momentanen Wirkungsgrad ist der mittlere Wirkungsgrad

$$\eta = \frac{\text{nutzbare Arbeit}}{\text{hineingesteckte Wärmemenge}} = \frac{{}^{\text{e}}W_{\text{nutz}}}{{}^{\text{w}}Q_{\text{warm}}}$$
(18)

von Bedeutung, er wird über einen vereinbarten Zeitraum unter vereinbarten Bedingungen ermittelt.

Die Effizienzen von Wärmepumpen

heißen Leistungszahlen ε (es gibt mehr als eine!). Als Aufwand gilt hier immer die (elektrische) Antriebsleistung ${}^{\rm e}\dot{W}_{\rm Antrieb} = {}^{\rm e}I_{\rm Antrieb} \cdot {}^{\rm e}U$. Der Nutzen wird je nach Zweckbestimmung individualisiert. Die momentanen Leistungszahlen für eine Heizwärmepumpe bzw. Kühlmaschinesind nämlich:

$$\varepsilon_{\text{Heiz}}(t) = \frac{{}^{\text{w}}\dot{Q}_{\text{Heiz}}(t)}{{}^{\text{e}}\dot{W}_{\text{Antrieb}}(t)} \quad \text{und} \quad \varepsilon_{\text{K\"{u}hl}}(t) = \frac{{}^{\text{w}}\dot{Q}_{\text{K\"{u}hl}}(t)}{{}^{\text{e}}\dot{W}_{\text{Antrieb}}(t)}$$
(19)

Auf der warmen Seite gilt der an die Außenwelt *abgegebene* Wärmestrom ${}^{\rm w}\dot{Q}_{\rm Heiz}$ als Nutzen (wird positiv gezählt). Auf der kalten Seite hingegen wird der dem Kühlraum/Kühlgut *entzogene* Wärmestrom ${}^{\rm w}\dot{Q}_{\rm Kühl}$ positiv gezählt, also der von der Maschine aufgenommene Wärmestrom. Natürlich hat die Antriebsleistung ${}^{\rm e}\dot{W}_{\rm Antrieb}$ positives Vorzeichen, wenn sie erwartungsgemäß in die Maschine hineingesteckt werden muss...

Wie beim Wirkungsgrad gibt es auch hier *mittlere* Leistungszahlen: Als aufgewendete Energie gilt bei der Wärmepumpe die elektrische Energie ${}^{\rm e}W_{\rm Antrieb}=\int{}^{\rm e}I_{\rm Antrieb}\cdot{}^{\rm e}U\,{\rm d}t$. Die *mittleren* Leistungszahlen für eine Heizwärmepumpe bzw. Kühlmaschine sind dann:

$$\varepsilon_{\text{Heiz}} = \frac{{}^{\text{w}}Q_{\text{Heiz}}}{{}^{\text{e}}W_{\text{Antrieb}}} \quad \text{und} \quad \varepsilon_{\text{K\"{u}hl}} = \frac{{}^{\text{w}}Q_{\text{K\"{u}hl}}}{{}^{\text{e}}W_{\text{Antrieb}}}$$
(20)

6.8.1 Wirkungsgrade und Leistungszahlen stammen aus der Praxis.

In der Vereinbarung des "Aufwandes" und "Nutzens" steckt eine gewisse Willkür bzw. Flexibilität.

- Wie wirksam ist der aktuell verwendete Aufbau? Beim Getränke-Abkühler geht ein Teil des Nutzens dafür drauf, von außen eindringende Wärme fortzuschaffen der Netto-Nutzen sinkt. Beim Thermogenerator geht ein Teil der bereitgestellten Wärme unmittelbar an die Umgebung der Brutto-Aufwand steigt.
- Wie groß kann die Effizienz bestenfalls sein, die irgendein Gerät erzielt, wenn es mit genau dem im Versuch vorliegenden Peltier-Modul ausgestattet wäre?

7 Versuchsaufbau

Das Peltier-Modul im Versuchsaufbau (Abb. 4) ist gut wärmeleitend zwischen zwei Messingblöcken eingefügt, die wiederum gut wärmeleitend mit Wasserbehältern B1 und B2 verbunden sind. Damit das Wasser gleichmäßig (anstatt vornehmlich in Wandnähe) gekühlt bzw. erwärmt wird, sollen die Thermometer mit ihrem Rührfuß durch die Deckelöffnung auf und ab bewegt werden. Das Peltier-Modul bildet eine (unvermeidbare) Wärmebrücke zwischen den Behältern, ansonsten sind die Behälter per Gehäuse und Deckel nach außen und gegeneinander gut thermisch isoliert. Das Peltier-Modul ist mit zwei Steckbuchsen an der Gehäusefront verbunden, dort schließen Sie ein digitales Handmultimeter zur Messung der Klemmenspannung an.

Während des Versuchs gilt der kleinere Behälter B1 als "kühl", d. h.:

- Im Betrieb als Wärmepumpe soll die vom externen Netzgerät erzwungene Stromrichtung so gewählt werden, dass der kleinere Behälter B1 abgekühlt wird.
- Für den Einsatz als Thermogenerator füllt man B1 mit schmelzenden Eisstücken; der Strom durch einen externen Lastwiderstand ergibt sich von allein.

7.1 Es gibt drei Betriebszustände (ein "großes Thema" in W+)

Betrachten Sie Abb. 4 und Abschnitt 6.6 mit Abb. 6 (und auch Abb. 2 in W+ (Version H)).

Thermoelement: Die Frontbuchsen bleiben "offen" bis auf ein Spannungsmessgerät, das die herrschende (Thermo-)Spannung anzeigt: ${}^{e}U_{\text{Klemmen}} = U_{\text{TherMo}}$.

Wärmepumpe: Parallel zum Spannungsmessgerät werden die Frontbuchsen mit einem Labor-Netzgerät verbunden; letzteres bestimmt den durch das Peltier-Modul fließenden Strom und zeigt seine Stärke $^{\rm e}I_{\rm Antrieb}$ digital an.

Leistungszahlen werden gemäß Beschreibung zur Glchg. (19) bestimmt.

Thermogenerator: An die Frontbuchsen wird parallel zum Spannungsmessgerät ein "Verbraucher" angeschlossen, hier ein ohmscher Widerstand ${}^{e}R_{Last}$. Es ist die Thermospannung, welche einen Stromfluss ${}^{e}I = {}^{e}I_{Last}$ durch Peltier-Modul und Lastwiderstand bewirkt:

$$U_{\text{TherMo}} = {}^{\text{e}}I \cdot ({}^{\text{e}}R_{\text{innen}} + {}^{\text{e}}R_{\text{Last}})$$
 (21)

Für den Wirkungsgrad gemäß (17) zählt nur die *außen* verfügbare Leistung, daher ist nur ${}^e\dot{W}_{\rm Last}={}^e\dot{W}_{\rm nutz}$ die nutzbare Leistung, während der Aufwand in der Verwirklichung des Wärmestromes besteht. Es ist üblich, die an das kalte Reservoir abgegebene Wärme 9 zu ignorieren und die aus dem warmen Reservoir abgerufene Wärmeleistung ${}^w\dot{Q}_{\rm warm}$ als aufgewendete Leistung anzusehen.

$$\eta(t) = \frac{{}^{\text{e}}\dot{W}_{\text{Last}}}{{}^{\text{w}}\dot{Q}_{\text{warm}}} = \frac{{}^{\text{e}}U_{\text{Klemmen}} \cdot {}^{\text{e}}I}{{}^{\text{w}}\dot{Q}_{\text{warm}}} = \frac{{}^{\text{e}}U_{\text{Klemmen}}^2/{}^{\text{e}}R_{\text{Last}}}{{}^{\text{w}}\dot{Q}_{\text{warm}}}$$
(22)

⁹diese "Ab(fall)wärme" muss im Grunde "entsorgt" werden; die überlieferte Definition des Wirkungsgrades einer Wärmekraftmaschine bezeugt (noch) eine "Ex–und–Hopp!"-Mentalität… Allerdings gibt es gute (theoretische) Gründe, diese Definition des Wirkungsgrades beizubehalten.

7.2 Angaben zu Behältern und Peltier-Modulen

 K_i ist die Wärmekapazität des Behälters Bi einschließlich Thermometer;

 ${}^{\mathrm{W}}R_{i,\mathrm{Umg}}$ ist der Wärmewiderstand zwischen Bi und Umgebung;

 m_i ist die Masse des gemäß Markierung in Bi eingefüllten Wassers der spezifischen Wärmekapazität $C_{\text{Wasser}} = 4.19 \,\mathrm{J}\,\mathrm{g}^{-1}\,\mathrm{K}^{-1}$. Fehlerschranken zu m_1, m_2 abschätzen (hängt ab von Sorgfalt beim Einfüllen).

$$m_1 = (350 \pm ?) \,\mathrm{g}$$
 $K_1 = (210 \pm 21) \,\mathrm{J \, K^{-1}}$ ${}^\mathrm{w} R_{1,\mathrm{Umg}} = (9.25 \pm 0.53) \,\mathrm{K \, W^{-1}}$ $m_2 = (900 \pm ?) \,\mathrm{g}$ $K_2 = (530 \pm 53) \,\mathrm{J \, K^{-1}}$ ${}^\mathrm{w} R_{2,\mathrm{Umg}} = (4.87 \pm 0.28) \,\mathrm{K \, W^{-1}}$

Hinweis zum Peltier-Modul: Wie auch am Anschauungsobjekt erkennbar, ist es quadratisch mit 16×16 Kontaktfeldern, besitzt demnach 127 Thermopaare (und zwei Anschlussleitungen).

8 Experiment am Peltier-Modul als Wärme pumpe (einsemestriges Praktikum); (LaG)

P Füllen Sie auf Raumtemperatur eingestelltes Wasser in beide Behälter, jeweils bis Unterkante des Farbrandes. **Protokollieren Sie** die Anfangstemperaturen und die Leerlaufspannung $U_0(t=0\,\mathrm{min})$. Hierzu darf zunächst nur das erste Kabel mit dem Netzgerät in Verbindung stehen. Erst nach Ablesen der Leerlaufspannung stellen Sie die zweite Verbindung her und lassen 20 Minuten lang einen Strom von $^{\mathrm{e}}I_{\mathrm{Antrieb}} = 2.50\,\mathrm{A}$ fließen. Die Stromrichtung ist so zu wählen, dass der kleinere Behälter abgekühlt wird (\oplus -Pol der Apparatur an \oplus -Pol des Netzgerätes, jeweils rote Buchse). Spannungseinstellung am Netzgerät auf maximalen Wert bringen, Strombegrenzung auf $2.50\,\mathrm{A}$ einregeln. Laufend Strom-Kontrolle und -Korrektur nötig wegen deutlicher Erwärmung des Netzgerätes in der Folgezeit.

Notieren Sie in Abständen von $\Delta t=2$ min sowohl die Temperaturen $T_1(t)$, $T_2(t)$ beider Behälter (zum Wärmetausch ständig rühren!) als auch die Spannung U(t) an der Apparatur¹⁰ (t=2 min, . . ., 20 min). Das Handmultimeter gestattet eine bessere Auflösung als die Spannungsanzeige des Netzgerätes!

Blicke auf die Umgebungstemperatur empfehlen sich hinsichtlich Aufgabe **P 4**, insbesondere nach etwa 10 Minuten Messzeit.

Nach Ablauf der 20 Minuten, d. h. insbesondere nach Ablesung von $U(20\,\mathrm{min})$, trennen Sie die Verbindungen zwischen Netzgerät und Peltier-Modul, beobachten aber mit dem Handmultimeter weiterhin die Spannung an den Anschlüssen der Apparatur. Im Laufe der folgenden 10 Minuten notieren Sie alle 2 Minuten die Behältertemperaturen $T_1(t)$, $T_2(t)$ und die Leerlaufspannung $U_0(t)$ ($t=22\,\mathrm{min},\ldots,30\,\mathrm{min}$).

Abschließend leeren Sie die beiden Behälter mit einem Saugheber (vom Betreuer einweisen lassen); Wasserreste mit Vliestuch aufnehmen. Wegen der beträchtlichen Masse der im Wärmeisoliermaterial "schwimmend" gelagerten Anordnung sind Stöße, Kipp- und Schüttelbewegungen zu vermeiden!

Wärmeströme und Leistungszahlen (mit Toleranzangaben!)

P1 Fertigen Sie eine Auftragung an: T_1 und T_2 über gemeinsamer Zeitachse (Hochformat).

Spreizen Sie die T-Skala so weit, dass die Temperatur-Messpunkte der ersten 20 min ungefähr doppelt so viel (d. h. die T_1 - bzw. T_2 -Messpunkte jeweils ungefähr gleich viel) vertikalen wie horizontalen Platz beanspruchen.

¹⁰d. h. am Peltier-Modul

- **P2** Bestimmen Sie den Wärmestrom ${}^{\mathrm{w}}\dot{Q}_{\mathrm{K\"uhl}}(10\,\mathrm{min})$, der den Behälter B1 $\mathit{verl\"{a}sst}^{11}$, und den Wärmestrom ${}^{\mathrm{w}}\dot{Q}_{\mathrm{Heiz}}(10\,\mathrm{min})$, der den Behälter B2 $\mathit{aufheizt}$. Dazu benötigen Sie die Steigungen $\frac{\mathrm{d}T_1}{\mathrm{d}t}$ und $\frac{\mathrm{d}T_2}{\mathrm{d}t}$ an der Stelle $t=10\,\mathrm{min}$ (Fehlerabschätzung!) und die Angaben zu den Behältern. Vergleichen Sie diese Wärmeströme untereinander und mit der elektrischen Momentanleistung ${}^{\mathrm{e}}\dot{W}_{\mathrm{Antrieh}}(10\,\mathrm{min})$ hinsichtlich Energieerhaltung (Toleranzen einbeziehen).
- P3 Berechnen Sie die momentanen Leistungszahlen $\varepsilon_{\text{K\"u}hl}(10\,\text{min})$ und $\varepsilon_{\text{Heiz}}(10\,\text{min})$, und stellen Sie klar, ob diese Werte für das *Bauteil* "Peltier-Modul" gelten oder für das *Gerät* "Versuchsapparatur".
- P4 Berücksichtigen Sie den Wärmeaustausch mit der Umgebung: Berechnen Sie ${}^{w}\dot{Q}_{\text{Umg}\to 1}(10\,\text{min})$ und ${}^{w}\dot{Q}_{2\to \text{Umg}}(10\,\text{min})$, daraus ${}^{w}\dot{Q}_{1\to \text{Modul}}(10\,\text{min})$ und ${}^{w}\dot{Q}_{\text{Modul}\to 2}(10\,\text{min})$. Geben Sie die "neuen" Leistungszahlen an (mit Diskussion).

Auswertung bis an diese Stelle genügt für ein Testat (Punktzahl: nicht besser als "durchschnittlich")

Thermoelektrische Kenngrößen (Verstehen des Experiments – ohne Fehlerrechnung)

- **P5** Fertigen Sie eine Schaltskizze entsprechend Bild 6 von Abschnitt 6.6. Sie soll ${}^{\rm e}R_{\rm innen}$ und eine Quelle der Thermospannung zeigen sowie die "Klemmen" und das Messgerät für $U_{\rm Klemmen}$ andeuten; auch der Verursacher des Stromflusses soll erkennbar sein.
 - **Ergänzen Sie ihre Auftragung** um U und U_0 über der vorhandenen Zeitachse. Legen Sie die Skalen für U und U_0 so, dass die Spannungs-Graphen sich nicht mit den T-Graphen überschneiden (Lücken ausnutzen). Konstruieren Sie einen synthetischen Messpunkt $U_0(20\,\mathrm{min})$, indem Sie die Leerlaufspannung $U_0(t)$ ($t=22\,\mathrm{min},\ldots,30\,\mathrm{min}$) zurück nach $t=20\,\mathrm{min}$ extrapolieren.
- P6 Bestimmen Sie den Innenwiderstand ${}^eR_{\rm innen}$ und die Wärmeproduktion ${}^w\dot{Q}_{\rm Joule} = {}^eR_{\rm innen} \cdot {}^eI_{\rm Antrieb}^2$ aus Betriebsstrom ${}^eI_{\rm Antrieb}$, Betriebsspannung $U(20\,{\rm min})$ und Leerlaufspannung $U_0(20\,{\rm min})$. Berechnen Sie ${}^eR_{\rm innen}$ ebenfalls für den Versuchsbeginn bei $t=0\,{\rm min}$ (dazu ist U(t) zurück nach $t=0\,{\rm min}$ zu extrapolieren).
- P7 Identifizieren Sie in Ihren vorhandenen Daten die Thermospannung U_{TherMo} des Peltier-Moduls bei $t=20\,\mathrm{min}$. Berechnen Sie daraus zuerst die (Summen-) Thermokraft α_{TherMo} des Moduls, anschließend die Thermokraft α_{ThPaar} eines Thermopaares (orientieren Sie sich dabei an Glchg. (16)), und vergleichen Sie mit dem *Modellwert* der Glchg. (8).
- P8 Die wahren Peltier-Wärmeströme bei $t=10\,\mathrm{min}$ erhalten Sie folgendermaßen: Weil Sie in P7 die Glchg. (16) nutzten, können Sie auch $\Pi_{\mathrm{TherMo}}(T_1(10\,\mathrm{min}))$ und $\Pi_{\mathrm{TherMo}}(T_2(10\,\mathrm{min}))$ aus α_{TherMo} berechnen und daraus ${}^{\mathrm{w}}\dot{Q}_{1,\mathrm{Peltier}}$ und ${}^{\mathrm{w}}\dot{Q}_{2,\mathrm{Peltier}}$. Vergleich mit ${}^{\mathrm{w}}\dot{Q}_{1\to\mathrm{Modul}}$ und ${}^{\mathrm{w}}\dot{Q}_{\mathrm{Modul}\to 2}$!

9 Experiment am Peltier-Modul als Thermogenerator (Praktikum III)

G An die Apparatur schließt man das als Voltmeter betriebene Digitalmultimeter und einen Lastwiderstand ${}^{\rm e}R_{\rm Last}=2.55\,\Omega$ an. Dann gibt man möglichst viele Eisstücke in den kleinen Behälter und füllt mit auf $0\,{}^{\circ}{\rm C}$ vorgekühltem (eiskaltem) Wasser auf, bis die Eisstücke aufschwimmen. Der Rührfuß des Thermometers wird *obenauf* gestellt, um das Eis zwecks Wasserverwirbelung untertauchen zu können. Erst danach wird der große Behälter bis zur Unterkante der Farbmarkierung mit warmem Wasser gefüllt. Die Anfangstemperatur soll ca. $40\,{}^{\circ}{\rm C}$ betragen (Füllwasser nicht wärmer als $45\,{}^{\circ}{\rm C}$ temperieren, sonst muss während der Messungen ein Teil des Schmelzwassers gegen neues Eis ersetzt werden). Nur der große Behälter benötigt den wärmeisolierenden Deckel.

¹¹denken Sie über das Vorzeichen nach, welches zu einem "in die erwartete Richtung" fließenden Wärmestrom gehört!

Beobachten Sie bei fortwährendem Rühren in beiden Behältern die Spannung am Lastwiderstand; sobald sie nicht weiter ansteigt, haben sich die Arbeitstemperaturen im und am Peltier-Modul eingestellt – vorher kann die Messung nicht beginnen.

Wichtig: in beiden Behältern ständig rühren! Notieren Sie die Temperatur des "kalten" Behälters bei $t=10\,\mathrm{min},\,t=20\,\mathrm{min},\,t=26\,\mathrm{min}$ und $t=30\,\mathrm{min}.$ Vergewissern Sie sich, dass die Temperatur unter 1 °C bleibt.

Messen Sie 20 min lang in Abständen $\Delta t=2$ min die Spannung $U_{\rm Last}(t)$ am Widerstand und die Temperatur $T_2(t)$ des "warmen" Behälters (t=0 min, . . ., 20 min). Notieren Sie die Umgebungstemperatur vor Beginn der Messung (t=0 min), zwischendurch (t=10 min) - für Aufgabe **G 4** und am Ende der Messung (t=20 min).

Trennen Sie dann den Widerstand ab und notieren weitere $10 \, \text{min}$ lang die Leerlaufspannung $U_0(t)$ und die Temperatur $T_2(t)$, $t=22 \, \text{min}, \ldots, 30 \, \text{min}$.

Abschließend leeren Sie die beiden Behälter mit einem Saugheber (vom Betreuer einweisen lassen); Wasserreste mit Vliestuch aufnehmen. Wegen der beträchtlichen Masse der im Wärmeisoliermaterial "schwimmend" gelagerten Anordnung sind Stöße, Kipp- und Schüttelbewegungen zu vermeiden!

Wärmeströme und Wirkungsgrad(e) (Toleranzangaben/Fehlerrechnung nur bei G 2!)

G 1 Fertigen Sie eine Auftragung von $T_2(t)$ an (Hochformat – die Auftragung wird später mit $U_{\text{Last}}(t)$ und $U_0(t)$ ergänzt...)

Ist im Temperaturverlauf ein Unterschied zwischen den Zuständen (unter Last) und (Leerlauf) des Thermogenerators erkennbar?

- **G 2 Bestimmen Sie den Wärmestrom** ${}^{\mathrm{w}}\dot{Q}_{\mathrm{warm}}(10\,\mathrm{min})$, der den Behälter B2 $\mathit{verlässt},^{12}$ unter Verwendung der Steigung $\frac{\mathrm{d}T_2}{\mathrm{d}t}$ an der Stelle $t=10\,\mathrm{min}$ (Fehlerabschätzung brauchen Sie für **G 13**!) und der Gerätedaten, und vergleichen Sie ihn mit der elektrischen Momentanleistung ${}^{\mathrm{e}}\dot{W}_{\mathrm{Last}}(10\,\mathrm{min})$.
- **G3 Ermitteln Sie den momentanen Wirkungsgrad** $\eta(10\,\mathrm{min})$, und stellen Sie klar, ob dieser Wert für das *Bauteil* "Peltier-Modul" gilt oder für das *Gerät* "Versuchsapparatur".
- **G4** Berücksichtigen Sie den Wärmeaustausch mit der Umgebung. Berechnen Sie ${}^{\text{w}}\dot{Q}_{2 \to \text{Umg}}(10 \, \text{min})$ und den in das Peltier-Modul eintretenden Wärmestrom ${}^{\text{w}}\dot{Q}_{2 \to \text{PM}}(10 \, \text{min})$.

Geben Sie den "neuen" Wirkungsgrad an und ordnen Sie ihn mithilfe des Carnot-Wirkungsgrades ein.

Thermoelektrische Kenngrößen

G 5 Fertigen Sie eine Schaltskizze entsprechend Bild 6 von Abschnitt 6.6:

Sie soll ${}^eR_{\rm innen}$ und eine Quelle der Thermospannung zeigen sowie die "Klemmen" und das Messgerät für $U_{\rm Klemmen}$ andeuten; auch ${}^eR_{\rm Last}$ soll vorhanden sein.

Ergänzen Sie ihre Auftragung um U_{Last} und U_0 über der vorhandenen Zeitachse.

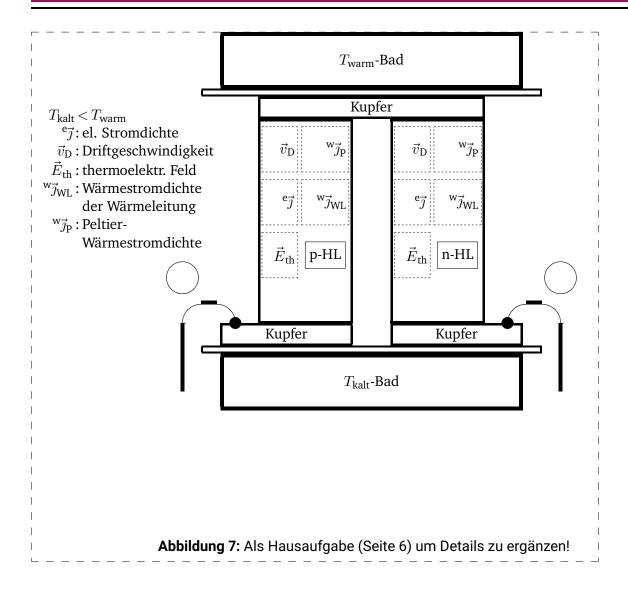
Legen Sie die Skalen für U_{Last} und U_0 so, dass die Spannungs-Graphen sich nicht mit dem T_2 -Graphen überschneiden (Lücken ausnutzen).

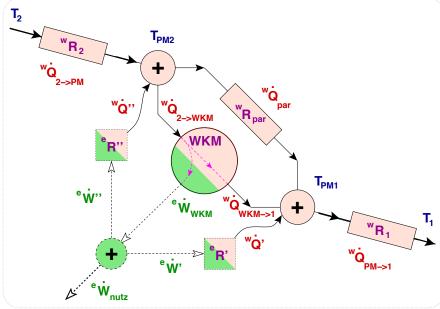
Konstruieren Sie einen synthetischen Messpunkt $U_0(20\,\mathrm{min})$, indem Sie die Spannung $U_0(t)$ des unbelasteten Peltier-Moduls ($t=22\,\mathrm{min},\ldots,30\,\mathrm{min}$) zurück nach $t=20\,\mathrm{min}$ extrapolieren. Zeichnen Sie den synthetischen Messpunkt ein, kennzeichnen ihn jedoch als solchen.

G6 Bestimmen Sie den Innenwiderstand ${}^{e}R_{\text{innen}}$ des Thermogenerators aus ${}^{e}R_{\text{Last}}$, $U_{\text{Last}}(20 \, \text{min})$ und $U_{0}(20 \, \text{min})$.

¹²denken Sie über das Vorzeichen nach, welches zu einem "in die erwartete Richtung" fließenden Wärmestrom gehört!

- ${\bf G7}$ Gehen Sie davon aus, dass sich ${}^{\rm e}R_{\rm innen}$ im Temperaturbereich des Experiments nicht ändert.
 - Wie groß ist demnach die bei $t=10\,\mathrm{min}$ im Inneren des Moduls "verbratene" elektrische Leistung? Weshalb nennt man die in ${}^{\mathrm{e}}R_{\mathrm{Last}}$ umgesetzte Leistung Nutzleistung (${}^{\mathrm{e}}\dot{W}_{\mathrm{nutz}}$ in Bild 8), die in ${}^{\mathrm{e}}R_{\mathrm{innen}}$ umgesetzte hingegen Verlustleistung? Wie groß ist die per Seebeck-Effekt produzierte elektrische Leistung, und welche Bezeichnung trägt sie in Bild 8?
 - **Begründen Sie** (nach Inspektion des Anschauungsobjektes), dass eine Hälfte der Verlustleistung als Wärmestrom ${}^{\rm w}\dot{Q}''$ zur warmen Fläche des Moduls fließt. 13
- **G8** Tragen Sie Energiestrom-Werte an den passenden Stellen in das Bild 8 mit ein. Es geht um Befunde zum Zeitpunkt $t=10\,\mathrm{min}$ aus den Aufgaben **G2** ($^\mathrm{e}\dot{W}_\mathrm{Last}$) bis $^\mathrm{14}$ **G11**. Nutzen Sie die Knotenregel, um auch die restlichen Werte zu berechnen und einzutragen, sodass sich ein vollständiges Bild der Situation ergibt. Die gemeinsame Maßeinheit [$^\mathrm{w}\dot{Q}$] = [$^\mathrm{e}\dot{W}$] = W nennen Sie in einer Legende (oben rechts).
- G9 Identifizieren Sie in Ihren vorhandenen Daten die Thermospannung $U_{\rm TherMo}$ des Peltier-Moduls bei $t=20\,{\rm min}$. Berechnen Sie daraus zuerst die (Summen-) Thermokraft $\alpha_{\rm TherMo}$ des Moduls, anschließend die Thermokraft $\alpha_{\rm ThPaar}$ eines Thermopaares. Zu diesem Zweck orientieren Sie sich an Glchg. (16) und behaupten, so gut gerührt zu haben, dass die Temperaturen $T_{\rm PM2}$ und $T_{\rm PM1}$ am Modul mit den Wassertemperaturen T_2 bzw. T_1 übereinstimmen.
 - **Vergleichen Sie** α_{ThPaar} mit dem *Modell*wert der Glchg. (8). Wie lässt sich die quantitative Aussage des Drude-Modells einordnen?
- G 10 Da ohnehin (16) ausgenutzt wurde, geht die Auswertung für $t=10\,\mathrm{min}$ weiter: Aus α_{TherMo} bestimmen Sie die Peltier-Koeffizienten $\Pi_{\mathrm{TherMo}}(T_2(10\,\mathrm{min}))$ für die warme Seite des Moduls. Nun können Sie den vom elektrischen Stromfluss fortgetragenen Peltier-Wärmestrom ${}^{\mathrm{w}}\dot{Q}_{\mathrm{Peltier}}(T_2(10\,\mathrm{min}))$ berechnen; in Bild 8 heißt er ${}^{\mathrm{w}}\dot{Q}_{2\text{->WKM}}$.
- **G 11 Bestimmen Sie** den per "gewöhnlicher" Wärmeleitung verursachten Wärmestrom ${}^{\rm w}\dot{Q}_{\rm par}$ er fließt neben, d. h. "parallel zu" den elektrisch verursachten Energieströmen, hat mit Thermoelektrizität nichts zu tun und berechnen Sie den Wärmewiderstand ${}^{\rm w}R_{\rm par}$!
- G 12 Abschließend berechnen Sie die thermoelektrische Güteziffer des Moduls


$$(zT)_{\text{Modul}} = \alpha_{\text{Modul}}^2 \cdot \frac{{}^{\text{W}}R_{\text{par}}}{{}^{\text{e}}R_{\text{innen}}} \cdot \frac{T_1 + T_2(10\,\text{min})}{2}$$
 (23)


- **G 13 (freiwillig, bei Interesse)** Um wie viel würde der den warmen Behälter verlassende Brutto-Wärmestrom ${}^{\rm w}\dot{Q}_{\rm warm}$ abnehmen, wenn man bei t=10 min den Lastwiderstand abtrennen würde?
 - Vergleichen Sie diese Abnahme mit der "nun nicht mehr abgerufenen" Nutzleistung ${}^{\rm e}\dot{W}_{\rm Last}(10\,{\rm min})$. Warum besteht solch ein Unterschied?
 - Vergleichen Sie diese Abnahme mit Ihrer Fehlerabschätzung $\Delta^{w}\dot{Q}_{warm}$ aus **G 2**. Wie schätzen Sie die Chance ein, im $T_2(t)$ -Verlauf Ihrer Messdaten einen "Knick" bei $t=20\,\mathrm{min}$ (vgl. **G 1**) überzeugend nachweisen zu können?
- **G 14 (für anspruchsvolle Experten)** Anhand der Größen T_{PM1} , T_{PM2} , α_{Modul} , ${}^{\text{e}}R_{\text{innen}}$, ${}^{\text{e}}R_{\text{Last}}$ und ${}^{\text{w}}R_{\text{par}}$ lassen sich alle in Bild 8 enthaltenen Energieströme berechnen. Die vorige Aufgabe **G 13** kann man also auch für den Zeitpunkt t=20 min konkret analysieren, nicht nur "schätzen".

Die letzte Seite 15 enthält Bild 7 und Bild 8 (zum Ausschneiden)

¹³warum gerade die Hälfte, und wohin geht die andere Hälfte?

¹⁴ausstehende Werte sind fortlaufend zu ergänzen

Abbildung 8:

Energieflüsse innerhalb des Peltier-Moduls als Thermogenerator, schematisch zerlegt in Beiträge, die unterschiedlich vom Strom $^{\rm e}I$ abhängen:

- unabhängig von ^eI (irreversibel),
- proportional zu ^eI (reversibel),
- mit Quadrat von $^{\rm e}I$ (irreversibel). Die zwei Summierpunkte \bigoplus bei $T_{\rm PM2}$ (warm) und $T_{\rm PM1}$ (kalt) repräsentieren Wärmeübergangsflächen des Moduls, der untere die Kopplungsstelle zur Übergabe elektrischer Energie. Die Wärmewiderstände $^{\rm w}R_1$ und $^{\rm w}R_2$ gehören nicht zum Modul, sondern verweisen auf die nicht-perfekte thermische Kopplung mit äußeren Wärmebädern.